Saturday 29 June 2019

Qual é a média móvel ponderada exponencialmente


A média móvel móvel ponderada exponencial (EWMA) é uma estatística para monitorar o processo que mede os dados de uma forma que dê cada vez menos peso aos dados à medida que eles são removidos no tempo. Comparação do gráfico de controle de Shewhart e das técnicas de controle de EWMA Para a técnica de controle de gráfico de Shewhart, a decisão sobre o estado de controle do processo a qualquer momento, (t) depende apenas da medida mais recente do processo e, claro, O grau de veracidade das estimativas dos limites de controle de dados históricos. Para a técnica de controle EWMA, a decisão depende da estatística EWMA, que é uma média ponderada exponencialmente de todos os dados anteriores, incluindo a medida mais recente. Através da escolha do fator de ponderação, (lambda), o procedimento de controle EWMA pode ser sensível a uma deriva pequena ou gradual no processo, enquanto o procedimento de controle Shewhart só pode reagir quando o último ponto de dados está fora de um limite de controle. Definição de EWMA A estatística que é calculada é: mbox t lambda Yt (1-lambda) mbox ,,, mbox ,,, t 1,, 2,, ldots ,, n. Onde (mbox 0) é a média dos dados históricos (alvo) (Yt) é a observação no tempo (t) (n) é o número de observações a serem monitoradas incluindo (mbox 0) (0 Interpretação do gráfico de controle EWMA O vermelho Os pontos são os dados brutos, a linha irregular é a estatística EWMA ao longo do tempo. O gráfico nos diz que o processo está no controle porque todos (mbox t) se situam entre os limites de controle. No entanto, parece haver uma tendência para cima nos últimos 5 Períodos. Média móvel global - EMA BREAKING Down Média móvel exponencial - EMA As EMA de 12 e 26 dias são as médias de curto prazo mais populares e são usadas para criar indicadores como a divergência de convergência média móvel (MACD) e a porcentagem Osciladores de preços (PPO). Em geral, as EMAs de 50 e 200 dias são usadas como sinais de tendências de longo prazo. Os comerciantes que empregam análise técnica consideram as médias móveis muito úteis e perspicazes quando aplicadas corretamente, mas criam havoc quando usadas incorretamente ou são Mal interpretado. Toda a média móvel S comumente utilizados na análise técnica são, por sua própria natureza, indicadores de atraso. Conseqüentemente, as conclusões extraídas da aplicação de uma média móvel a um gráfico de mercado específico devem ser para confirmar um movimento de mercado ou para indicar sua força. Muitas vezes, no momento em que uma linha de indicador de média móvel fez uma mudança para refletir um movimento significativo no mercado, o ponto ótimo de entrada no mercado já passou. Um EMA serve para aliviar esse dilema até certo ponto. Como o cálculo EMA coloca mais peso sobre os dados mais recentes, ele abraça a ação do preço um pouco mais apertado e, portanto, reage mais rápido. Isso é desejável quando um EMA é usado para derivar um sinal de entrada comercial. Interpretando o EMA Como todos os indicadores de média móvel, eles são muito mais adequados para mercados de tendências. Quando o mercado está em uma tendência de alta forte e sustentada. A linha indicadora EMA também mostrará uma tendência de alta e vice-versa para uma tendência descendente. Um comerciante vigilante não só prestará atenção à direção da linha EMA, mas também a relação da taxa de mudança de uma barra para a próxima. Por exemplo, como a ação de preço de uma forte tendência de alta começa a achatar e reverter, a taxa de troca de EMAs de uma barra para a próxima começará a diminuir até que a linha do indicador aplique e a taxa de mudança seja zero. Devido ao efeito de atraso, até este ponto, ou mesmo algumas barras anteriores, a ação de preço já deveria ter sido revertida. Portanto, segue que a observação de uma diminuição consistente na taxa de mudança da EMA poderia ser usada como um indicador que poderia contrariar ainda mais o dilema causado pelo efeito de atraso das médias móveis. Os usos comuns das EMA EMAs são comumente usados ​​em conjunto com outros indicadores para confirmar movimentos significativos no mercado e avaliar sua validade. Para os comerciantes que comercializam mercados intradía e de rápido movimento, o EMA é mais aplicável. Muitas vezes, os comerciantes usam EMAs para determinar um viés de negociação. Por exemplo, se um EMA em um gráfico diário mostra uma forte tendência ascendente, uma estratégia de comerciantes intradiários pode ser trocar apenas pelo lado longo em um gráfico intradía. A abordagem EWMA possui um recurso atraente: requer relativamente poucos dados armazenados. Para atualizar nossa estimativa em qualquer ponto, precisamos apenas de uma estimativa prévia da taxa de variância e do valor de observação mais recente. Um objetivo secundário da EWMA é rastrear mudanças na volatilidade. Para valores pequenos, observações recentes afetam a estimativa prontamente. Para valores mais próximos de um, a estimativa muda lentamente com base nas mudanças recentes nos retornos da variável subjacente. O banco de dados RiskMetrics (produzido por JP Morgan e disponibilizado) usa o EWMA para atualizar a volatilidade diária. IMPORTANTE: a fórmula EWMA não assume um nível de variância médio de longo prazo. Assim, o conceito de volatilidade significa reversão não é capturado pelo EWMA. Os modelos ARCHGARCH são mais adequados para este fim. Um objetivo secundário da EWMA é acompanhar as mudanças na volatilidade, portanto, para valores pequenos, a observação recente afeta a estimativa prontamente e, para os valores mais próximos de uma, a estimativa muda lentamente para as mudanças recentes nos retornos da variável subjacente. O banco de dados RiskMetrics (produzido pela JP Morgan) e divulgado em 1994, usa o modelo EWMA para atualizar a estimativa diária de volatilidade. A empresa descobriu que, em uma variedade de variáveis ​​de mercado, esse valor dá uma previsão da variância que se aproxima da taxa de variância realizada. As taxas de variação realizadas em um determinado dia foram calculadas como uma média igualmente ponderada nos 25 dias subseqüentes. Da mesma forma, para calcular o valor ótimo de lambda para o nosso conjunto de dados, precisamos calcular a volatilidade realizada em cada ponto. Existem vários métodos, então escolha um. Em seguida, calcule a soma de erros quadrados (SSE) entre a estimativa EWMA e a volatilidade realizada. Finalmente, minimize o SSE variando o valor lambda. Soa simples é. O maior desafio é concordar com um algoritmo para calcular a volatilidade realizada. Por exemplo, as pessoas da RiskMetrics escolheram os 25 dias subseqüentes para calcular a taxa de variação realizada. No seu caso, você pode escolher um algoritmo que utilize preços diários, HILO e OPEN-CLOSE. Q 1: podemos usar o EWMA para estimar (ou prever) a volatilidade mais de um passo à frente A representação da volatilidade do EWMA não assume uma volatilidade média de longo prazo e, portanto, para qualquer horizonte de previsão além de um passo, o EWMA retorna uma constante valor:

No comments:

Post a Comment